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Methylenecyclopropanes undergo an interesting Lewis acid-
catalyzed ring-opening reaction with diphenylphosphine ox-
ide in the presence of sulfur or selenium upon heating at 85 ◦C
in 1,2-dichloroethane to give the corresponding homoallylic
thiol or selenol derivatives in good to high yields.

Methylenecyclopropanes (MCPs) are highly strained but readily
accessible molecules that have served as useful building blocks
in organic synthesis.1 MCPs undergo a variety of ring-opening
reactions in the presence of transition metals or Lewis acids
because the relief of ring strain provides a potent thermodynamic
driving force.2–8 In this paper, we wish to report that methylenecy-
clopropanes can undergo an interesting Lewis acid-catalyzed ring-
opening reaction with diphenylphosphine oxide in the presence of
sulfur or selenium upon heating at 85 ◦C in 1,2-dichloroethane
(DCE) to give the corresponding homoallylic thiol or selenol
derivatives in good to high yields.

We first envisioned that MCPs can easily react with
diphenylphosphine oxide [Ph2P(O)H], which is in an equilibrium
with Ph2P–OH,9 to give the corresponding homoallylic alcohol
derivatives similar to those of alcohols, aromatic amines or
sulfonamides in the presence of Lewis acid.3–6 However, a dis-
ordered reaction was observed. In the following investigation, we
found that, with the addition of sulfur, the expected ring-opening
reaction of MCP 1a with diphenylphosphine oxide takes place in
the presence of a Lewis acid to give the corresponding homoallylic
thiol derivative 2a in good yield under mild conditions. The results
are summarized in Table 1. We found that in the absence of Lewis
acid, 2a was obtained in 67% and 35% yield in DCE under reflux
(85 ◦C) after 12 and 1 h, respectively (Table 1, entries 1 and 2).
In the presence of a Lewis acid, 2a was obtained in good yields
within 1 h under otherwise identical conditions (Table 1, entries
3–8). Lewis acid Sn(OTf)2 is the best one for this reaction to give
2a in 86% yield in DCE under reflux (Table 1, entries 2–8). Further
examination of the solvent effects revealed that DCE is the best one
for this transformation (Table 1, entries 9–14). In dichloromethane
or ether, 2a was obtained in 67% and 68% at room temperature
(20 ◦C) after 12 h, respectively (Table 1, entries 11 and 13). Only,
25% of 2a was formed in dichloromethane at room temperature
(20 ◦C) within 1 h (Table 1, entry 12).
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Table 1 Optimization of conditions for the ring-opening reaction of MCP
1a with HP(O)Ph2 in the presence of sulfur

Entrya Catalyst Solvent Time/h Yield/(%)b 2b

1 none DCE 12 67
2 none DCE 1 35
3 Sn(OTf)2 DCE 1 86
4 La(OTf)3 DCE 1 74
5 Zr(OTf)4 DCE 1 66
6 Sc(OTf)3 DCE 1 81
7 Yb(OTf)3 DCE 1 77
8 BF3 Et2O DCE 1 66
9 Sn(OTf)2 THF 10 44

10 Sn(OTf)2 CH3CN 10 64
11 Sn(OTf)2 CH2Cl2

c 12 67
12 Sn(OTf)2 CH2Cl2

c 1 25
13 Sn(OTf)2 etherc 12 68
14 Sn(OTf)2 toluene 8 80

a Reaction conditions: 1a (0.2 mmol), HP(O)Ph2 (0.3 mmol), sulfur
(0.3 mmol), Lewis acid (10 mol%), solvent (2.0 mL), and the reactions
were carried out under reflux. b Isolated yields. c At room temperature.

Under these optimal reaction conditions, we next carried out
Sn(OTf)2-catalyzed ring-opening reactions of a variety of MCPs
1 with diphenylphosphine oxide in the presence of sulfur and
selenium. We found that the corresponding ring-opening products
2 were obtained in moderate to good yields within 1–6 h for
MCPs 1 with electron-rich, electron-neutral, and electron-poor
substituents on the benzene ring (Table 2). For unsymmetrical
MCPs 1e, 1g, and 1h, the corresponding products 2e, 2g, and 2h
were obtained as mixtures of E- and Z-isomers (Table 2, entries
4, 6 and 7) (ESI†). But for unsymmetrical MCPs 1i, 1j, 1k, and
1l, the corresponding products 2i, 2j, 2k and 2l were obtained as
the single E-isomer in moderate yields (Table 2, entries 8–11). The
possible reason is that the aromatic group is sterically much larger
than a hydrogen atom, which results in the high regioselectivity.
Moreover, in the presence of selenium, the corresponding products
2m–2p could be also obtained in good yields under the standard
conditions (Table 1, entries 12–15).

The reaction of MCP 1a with diphenylphosphine oxide has
also been examined under identical conditions in the presence of
an oxygen atmosphere.10 However, the corresponding ring-opened
product 3a was formed in 32% yield after 10 h (Scheme 1).

The structures of all the products reported in this paper were
determined by 1H, 13C NMR, and 31P NMR spectroscopic data,
HRMS or microanalysis.
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Table 2 Ring-opening reaction of MCPs 1 with HP(O)Ph2 in the presence of sulfure or selenium

Entrya MCPs (R1/R2) X Time/h Yield/(%)b 2 (E : Z)

1 1b (q-MeC6H4/q-MeC6H4) S 1 2b, 71
2 1c (q-ClC6H4/q-ClC6H4) 1 2c, 81
3 1b (q-MeOC6H4/q-MeOC6H4) 1 2d, 80
4 1e (q-ClC6H4/C6H5) 1 2e, 66 (1 : 1)c

5 1f (q-FC6H4/q-FC6H4) 1 2f, 71
6 1g (q-MeOC6H4/q-C6H5) 1 2g, 78 (1 : 1)c

7 1h (C6H5/Me) 1 2h, 51 (4 : 1)c

8 1i (C6H5/H) 1 2i, 73d

9 1j (o-MeC6H4/H) 1 2j, 65d

10 1k (p-MeC6H4/H) 1 2k, 68d

11 1l (m-MeC6H4/H) 1 21, 61d

12 1a Se 1.5 2m, 73
13 1b 1.5 2n, 82
14 1c 2.5 2o, 66
15 1i 6 2p, 71d

a Reactions were carried out in an oil bath at 80 ◦C. Reaction conditions: 1 (0.3 mmol), HP(O)Ph2 (0.45 mmol), X (0.45 mmol), Sn(OTf)2 (10 mol%),
DEC (2.0 mL). b Isolated yields. c Mixtures of E- and Z-isomers. d Products were obtained as E-configuration.

Scheme 1 Reaction of MCP 1a with HP(O) Ph2 under oxygen
atmosphere.

The reaction mechanism is outlined in Scheme 2. The reaction
of sulfur or selenium with Ph2POH produces the corresponding
Ph2P(X)OH species (X = S, Se),11 which is in equilibrium
with Ph2P(O)XH.12 The reaction of Ph2P(O)XH or Ph2P(X)OH
with Sn(OTf)2 activated MCP 1 (intermediate A) produces the
corresponding product 2 and regenerates Sn(OTf)2. The stronger
nucleophilic properties of sulfur or selenium atoms play a key role
in producing the corresponding ring-opened products in higher
yields.13

Scheme 2 Proposed mechanism of ring-opening reactions of MCPs
catalyzed by Sn(OTf)2.

In summary, we have disclosed an interesting Lewis acid-
catalyzed ring-opening reaction of MCPs with diphenylphosphine
oxide in the presence of sulfur or selenium upon heating at 85 ◦C in
DCE to give the corresponding ring-opening products in moderate
to good yields.14 The corresponding homoallylic thiol or selenol
derivatives 2 may be useful intermediates in organic synthesis.
Efforts are in progress to elucidate the mechanistic details of this
reaction and to determine its scope and limitations.
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